

Documentation for daqmx

	Installation
	From PIP

	From setup.py

	Getting Started
	Install the Drivers

	Attach Hardware

	Acquire Hardware

	Sample Analog Input

	Capture Analog Input

	API
	Instrument

	Port

	Analog Input

	Examples
	Hardware Acquisition

	Read Digital Input

	Set/Clear Digital Output

	Read Analog Input

	Write Analog Output

Indices and tables

	Index

	Module Index

	Search Page

Installation

From PIP

To install from pip:

python -m pip install daqmx

From setup.py

To install from the github repository:

$>git clone https://github.com/slightlynybbled/daqmx & python setup.py install

Getting Started

Install the Drivers

Download an install the latest published
NI DAQmx [https://www.ni.com/en-us/support/downloads/drivers/download.ni-daqmx.html]
software from the National Instruments site. This should install all necessary
hardware drivers into your OS.

Attach Hardware

Attach your device to your PC. Ensure tha the DAQmx software on your PC
has detected the hardware and assigned it a valid name (i.e. “Dev3”).

Acquire Hardware

From within your program, acquire the hardware:

daq = NIDAQmxInstrument()

You may also specify the DAQmx-assigned name in order to acquire a specific
instrument:

daq = NIDAQmxInstrument(device_name='Dev3')

Hardware acquisition from the model number is also supported:

daq = NIDAQmxInstrument(model_number='USB-6001')

Finally, you may specify the serial number:

daq = NIDAQmxInstrument(serial_number='1B5D996')

Sample Analog Input

Read analog input 0, print it to the console:

print(f'daq.ai0.value: {daq.ai0.value:.3f}V')

Capture Analog Input

Take multiple analog samples with more control over the hardware:

values = daq.ai1.capture(
 sample_count=10, rate=100,
 max_voltage=10.0, min_voltage=-10.0,
 mode='differential', timeout=3.0
)
print(values)

Note that the values variable contains a numpy array which represents
all samples acquired during the capture process.

API

Instrument

The NIDAQmxInstrument class is the primary method through which most users will
acquire hardware.

	
class daqmx.NIDAQmxInstrument(device_name: str = None, serial_number: (<class 'str'>, <class 'int'>) = None, model_number: str = None, loglevel=20)

	This class will create the tasks and coordinate with the
hardware in order to achieve a particular end on an input
or output of the DAQ module.

The methods within this object utilize the concepts found in the
NI-DAQmx Help menu, such as channels and tasks.

	Parameters

	
	device_name – the device name, often formatted like Dev3

	serial_number – the serial number as a hexadecimal value (this is
usually what is printed on the label)

	model_number – the model number as printed on the label

	
property sn

	Returns the device serial number

	Returns

	the device serial number

	
property model

	Returns the device model number

	Returns

	the device model number

	
property outputs

	Returns a list of outputs associated with the device.

	Returns

	a list of outputs associated with the device.

	
property inputs

	Returns a list of inputs associated with the device

	Returns

	a list of inputs associated with the device

Port

The Port class is the class which implements port writes and reads. It
may be used directly or through the instrument.

	
class daqmx.Port(device: str, port: str)

	Represents the port object as defined by DAQmx.

	Parameters

	
	device – the device string as defined by DAQmx (i.e. ‘Dev3’)

	port – the port name as defined by DAQmx (i.e. ‘port2’)

	
property lines

	Lists all of the lines attached to the port

	Returns

	a list of line names

Analog Input

The AnalogInput class is the class which implements most of the
analog input functionality. It may be used directly or through the instrument.

	
class daqmx.AnalogInput(device: str, analog_input: str = None, sample_count: int = 1000, rate: (<class 'int'>, <class 'float'>) = 1000.0, max_voltage: (<class 'int'>, <class 'float'>) = 5.0, min_voltage: (<class 'int'>, <class 'float'>) = 0.0, mode: str = 'differential', timeout: (<class 'int'>, <class 'float'>) = None)

	Represents an analog input on the DAQmx device.

	Parameters

	
	device – the device string assigned by DAQmx (i.e. ‘Dev3)

	analog_input – the analog input name assigned by DAQmx (i.e. “ao0”)

	sample_count – the number of samples to take

	rate – the frequency at which to sample the input

	max_voltage – the maximum expected voltage

	min_voltage – the minimum expected voltage

	mode – the mode; valid values: differential, pseudo-differential, /
singled-ended referenced, singled-ended non-referenced

	timeout – the time at which an error will occur if no response /
from the instrument is received.

	
property value

	Return a single sample of the analog input

	Returns

	a floating-point value representing the voltage

	
sample(analog_input: Optional[str] = None)

	Return a single sample of the analog input

	Returns

	a floating-point value representing the voltage

	
capture(analog_input: str = None, sample_count: int = None, rate: (<class 'int'>, <class 'float'>) = None, max_voltage: (<class 'int'>, <class 'float'>) = None, min_voltage: (<class 'int'>, <class 'float'>) = None, mode: str = None, timeout: (<class 'int'>, <class 'float'>) = None)

	Will capture <sample_count> samples at <rate>Hz in the <mode> mode.

	Parameters

	
	analog_input – the analog input name assigned by DAQmx (i.e. “ao0”)

	sample_count – the number of samples to take

	rate – the frequency at which to sample the input

	max_voltage – the maximum expected voltage

	min_voltage – the minimum expected voltage

	mode – the mode; valid values: differential, pseudo-differential, /
singled-ended referenced, singled-ended non-referenced

	timeout – the time at which an error will occur if no response /
from the instrument is received.

	Returns

	a numpy array containing all resulting values

	
find_dominant_frequency(analog_input: str = None, sample_count: int = None, rate: (<class 'int'>, <class 'float'>) = None, max_voltage: (<class 'int'>, <class 'float'>) = None, min_voltage: (<class 'int'>, <class 'float'>) = None, mode: str = None, timeout: (<class 'int'>, <class 'float'>) = None)

	Acquires the fundamental frequency observed within the samples

	Parameters

	
	analog_input – the NI analog input designation (i.e. ‘ai0’)

	sample_count – the number of samples to acquired

	rate – the sample rate in Hz
:param max_voltage: the maximum voltage possible

	min_voltage – the minimum voltage range

	mode – the voltage mode of operation; choices: ‘differential’,
‘pseudo-differential’, ‘single-ended referenced’,
‘single-ended non-referenced’

	timeout – the time at which the function should return if this
time has elapsed; set to -1 to make infinite (default)

	Returns

	the frequency found to be at the highest amplitude; this is
often the fundamental frequency in many domains

Examples

Hardware Acquisition

from daqmx import NIDAQmxInstrument

first, we allocate the hardware using the automatic hardware allocation
available to the instrument; this is safe when there is only one NIDAQmx
instrument, but you may wish to specify a serial number or model number
for a safer experience
daq = NIDAQmxInstrument()
print(daq) # printing the instrument will result in showing the
 # device name, model number, and serial number

you may also want to specify a particular device name, as assigned by
the DAQmx interface; this is usually something like `Dev3`, although
I believe that it may be renamed through the DAQmx interface
daq = NIDAQmxInstrument(device_name='Dev3')
print(daq)

you might also simply wish to specify the model number to acquire
daq = NIDAQmxInstrument(model_number='USB-6001')
print(daq)

further, you may wish to specify a particular serial number
daq = NIDAQmxInstrument(serial_number='1B5D996') # <-- the serial number, as
print(daq) # read off the back of the
 # device in a hex format, is
 # entered as a string

daq = NIDAQmxInstrument(serial_number=28694934) # <-- this is the same device,
print(daq) # entering the serial number
 # as an integer instead of as
 # a hex value

Read Digital Input

from daqmx import NIDAQmxInstrument

tested with NI USB-6001
which has the following digital inputs:
- port0/line0 through line7
- port1/line0 through line3
- port2/line0

first, we allocate the hardware using the automatic hardware
allocation available to the instrument; this is safe when there
is only one NIDAQmx instrument, but you may wish to specify a
serial number or model number for a safer experience
daq = NIDAQmxInstrument()

print(daq)

read the True or False state on the digital outputs
by reading the `portX` and `lineX` attributes; you
may wish to use the 5V output available to force the
pin to a state
print(daq.port0.line0)
print(daq.port0.line1)

!!! IMPORTANT !!!!
if you set the value of a port/line, the hardware will
be changed to an output; however if you read the value
using the similar syntax, the hardware will be changed
to an input!

Set/Clear Digital Output

from daqmx import NIDAQmxInstrument

tested with NI USB-6001
which has the following digital outputs:
- port0/line0 through line7
- port1/line0 through line3
- port2/line0

first, we allocate the hardware using the automatic hardware
allocation available to the instrument; this is safe when there
is only one NIDAQmx instrument, but you may wish to specify a
serial number or model number for a safer experience
daq = NIDAQmxInstrument()

print(daq)

set the True or False state on the digital outputs by setting the
`portX` and `lineX` attributes;
use your multimeter to verify!
daq.port0.line0 = False
daq.port0.line1 = True

you may wish to acquire the port separately
and manipulate it directly
port = daq.port1
port.line0 = True

if you try to set an output that doesn't exist, you
should see errors (uncomment to see)
#port.line5 = True

!!! IMPORTANT !!!!
if you set the value of a port/line, the hardware will
be changed to an output; however if you read the value
using the similar syntax, the hardware will be changed
to an input!

Read Analog Input

from daqmx import NIDAQmxInstrument, AnalogInput

tested with NI USB-6001
which has the following analog inputs:
- ai0
- ai1
- ai2
- ai3

first, we allocate the hardware using the automatic hardware
allocation available to the instrument; this is safe when there
is only one NIDAQmx instrument, but you may wish to specify a
serial number or model number for a safer experience
daq = NIDAQmxInstrument()

print(daq)

the easiest way to get a single sample is to select the analog input
attribute on the daq and interrogate its `value` attribute
print(f'daq.ai0.value: {daq.ai0.value:.3f}V')
print(f'daq.ai1.value: {daq.ai1.value:.3f}V')
print(f'daq.ai2.value: {daq.ai2.value:.3f}V')
print(f'daq.ai3.value: {daq.ai3.value:.3f}V')

you will start throwing errors if you interrogate
inputs that don't exist on the device (uncomment to see!)
#print(f'daq.ai4.value: {daq.ai4.value:.3f}V')

for more nuanced control over the analog
input, we could use the `capture` method
values = daq.ai1.capture(
 sample_count=10, rate=100,
 max_voltage=10.0, min_voltage=-10.0,
 mode='differential', timeout=3.0
)
print(f'values: {values} V')

note that the values come back as type `numpy.ndarray`
print(f'type(values): {type(values)}')

if you already know your device name, you might be
happier going straight to the `AnalogInput` constructor:
ai0 = AnalogInput(device='Dev3', analog_input='ai0')

we can do anything that we could have
done previously with the daq.aiX
print(f'ai0.value: {ai0.value:.3f}V')

Write Analog Output

from daqmx import NIDAQmxInstrument

tested with NI USB-6001
which has the following analog outputs:
- ao0
- ao1

first, we allocate the hardware using the automatic hardware
allocation available to the instrument; this is safe when there
is only one NIDAQmx instrument, but you may wish to specify a
serial number or model number for a safer experience
daq = NIDAQmxInstrument()

print(daq)

set the voltage on the analog outputs by setting the
attribute `aoX`; use your multimeter to verify!
daq.ao0 = 1.02
daq.ao1 = 2.04

once the attribute is set, you should be able to read
it on the daq; if the attribute hasn't been set, this
will result in an error (for now)
print(f'ao0: {daq.ao0:.2f}V')

if you set an attribute on an output that doesn't exist,
then the attribute will be set on the object, but nothing
will happen! be sure that you are setting valid attributes
daq.ao2 = 3.0
print(daq.ao2) # <-- there is no "ao2"!!!

Index

 A
 | C
 | F
 | I
 | L
 | M
 | N
 | O
 | P
 | S
 | V

A

 	
 	AnalogInput (class in daqmx)

C

 	
 	capture() (daqmx.AnalogInput method)

F

 	
 	find_dominant_frequency() (daqmx.AnalogInput method)

I

 	
 	inputs (daqmx.NIDAQmxInstrument property)

L

 	
 	lines (daqmx.Port property)

M

 	
 	model (daqmx.NIDAQmxInstrument property)

N

 	
 	NIDAQmxInstrument (class in daqmx)

O

 	
 	outputs (daqmx.NIDAQmxInstrument property)

P

 	
 	Port (class in daqmx)

S

 	
 	sample() (daqmx.AnalogInput method)

 	
 	sn (daqmx.NIDAQmxInstrument property)

V

 	
 	value (daqmx.AnalogInput property)

 nav.xhtml

 Table of Contents

 		
 Documentation for daqmx

 		
 Installation

 		
 From PIP

 		
 From setup.py

 		
 Getting Started

 		
 Install the Drivers

 		
 Attach Hardware

 		
 Acquire Hardware

 		
 Sample Analog Input

 		
 Capture Analog Input

 		
 API

 		
 Instrument

 		
 NIDAQmxInstrument

 		
 Port

 		
 Port

 		
 Analog Input

 		
 AnalogInput

 		
 Examples

 		
 Hardware Acquisition

 		
 Read Digital Input

 		
 Set/Clear Digital Output

 		
 Read Analog Input

 		
 Write Analog Output

_static/file.png

_static/minus.png

_static/plus.png

